Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Heliyon ; 10(9): e29841, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699040

RESUMO

Electricity supply in European countries faces a number of challenges, such as achieving carbon neutrality, tackling rising prices, reducing dependence on fossil fuels, including fossil fuel imports. To achieve these goals, the electricity systems of all European countries will have to undergo major changes, while taking into account technical, environmental, economic and social objectives. Our simulations provide essential data for this transition by analyzing different power plant portfolios and electricity consumption scenarios. The analyses focus on the cooperation of nuclear power and weather-dependent renewables, and on the possible role that battery-based electricity storage can play in the Hungarian electricity system. In this paper, we present the experience gained in setting up an electricity market model and the results of running the model on the electricity systems of Hungary and its six neighboring countries (Slovakia, Romania, Serbia, Croatia, Slovenia and Austria), taking into account the constraints of the cross-border capacities. The results of the sensitivity analysis for the 2030 power plant portfolios, battery capacities and renewables analyzed in this paper cover Hungary's import/export position, the energy source structure of its electricity generation, battery operation, CO2 emissions from electricity generation, expected prices in the system and the utilization parameters of nuclear power plants.

2.
Heliyon ; 10(1): e23681, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187218

RESUMO

Keloid scars and Dupuytren's disease are two common, chronic, and incurable fibroproliferative disorders that, among other shared clinical features, may induce joint contractures. We employed bulk RNA sequencing to discern potential shared gene expression patterns and underlying pathological pathways between these two conditions. Our aim was to uncover potential molecular targets that could pave the way for novel therapeutic strategies. Differentially expressed genes (DEGs) were functionally annotated using Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The protein-protein-interaction (PPI) networks were constructed by using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. The Molecular Complex Detection (MCODE) plugin was used for downstream analysis of the PPI networks. A total of 1922 DEGs were identified within Dupuytren's and keloid samples, yet no overlapping gene expression profiles were detected. Significantly enriched GO terms were related to skin development and tendon formation in keloid scars and Dupuytren's disease, respectively. The PPI network analysis revealed 10 genes and the module analysis provided six protein networks, which might play an integral part in disease development. These genes, including CDH1, ERBB2, CASP3 and RPS27A, may serve as new targets for future research to develop biomarkers and/or therapeutic agents.

3.
Front Bioeng Biotechnol ; 11: 1140118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008034

RESUMO

In the absence of clear molecular insight, the biological mechanism behind the use of growth factors applied in osteochondral regeneration is still unresolved. The present study aimed to resolve whether multiple growth factors applied to muscle tissue in vitro, such as TGF-ß3, BMP-2 and Noggin, can lead to appropriate tissue morphogenesis with a specific osteochondrogenic nature, thereby revealing the underlying molecular interaction mechanisms during the differentiation process. Interestingly, although the results showed the typical modulatory effect of BMP-2 and TGF-ß3 on the osteochondral process, and Noggin seemingly downregulated specific signals such as BMP-2 activity, we also discovered a synergistic effect between TGF-ß3 and Noggin that positively influenced tissue morphogenesis. Noggin was observed to upregulate BMP-2 and OCN at specific time windows of culture in the presence of TGF-ß3, suggesting a temporal time switch causing functional changes in the signaling protein. This implies that signals change their functions throughout the process of new tissue formation, which may depend on the presence or absence of specific singular or multiple signaling cues. If this is the case, the signaling cascade is far more intricate and complex than originally believed, warranting intensive future investigations so that regenerative therapies of a critical clinical nature can function properly.

4.
Front Bioeng Biotechnol ; 11: 1128587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937743

RESUMO

Aggrecan (ACAN) is localized in the intervertebral disc (IVD) in unique compartment-specific patterns where it contributes to the tissue structure and mechanical function together with collagens. The extracellular matrix (ECM) of the IVD undergoes degenerative changes during aging, misuse or trauma, which inevitably alter the biochemical and biomechanical properties of the tissue. A deeper understanding of these processes can be achieved in genetically engineered mouse models, taking into account the multifaceted aspects of IVD development. In this study, we generated aggrecan insertion mutant mice (Acan iE5/iE5 ) by interrupting exon 5 coding for the G1 domain of ACAN, and analyzed the morphological and mechanical properties of the different IVD compartments during embryonic development. Western blotting using an antibody against the total core protein failed to detect ACAN in cartilage extracts, whereas immunohistochemistry by a G1-specific antibody showed weak signals in vertebral tissues of Acan iE5/iE5 mice. Homozygous mutant mice are perinatally lethal and characterized by short snout, cleft palate and disproportionate dwarfism. Whole-mount skeletal staining and µ-CT analysis of Acan iE5/iE5 mice at embryonic day 18.5 revealed compressed vertebral bodies with accelerated mineralization compared to wild type controls. In Acan iE5/iE5 mice, histochemical staining revealed collapsed extracellular matrix with negligible sulfated glycosaminoglycan content accompanied by a high cellular density. Collagen type II deposition was not impaired in the IVD of Acan iE5/iE5 mice, as shown by immunohistochemistry. Mutant mice developed a severe IVD phenotype with deformed nucleus pulposus and thinned cartilaginous endplates accompanied by a disrupted growth plate structure in the vertebral body. Atomic force microscopy (AFM) imaging demonstrated a denser collagen network with thinner fibrils in the mutant IVD zones compared to wild type. Nanoscale AFM indentation revealed bimodal stiffness distribution attributable to the softer proteoglycan moiety and harder collagenous fibrils of the wild type IVD ECM. In Acan iE5/iE5 mice, loss of aggrecan resulted in a marked shift of the Young's modulus to higher values in all IVD zones. In conclusion, we demonstrated that aggrecan is pivotal for the determination and maintenance of the proper stiffness of IVD and vertebral tissues, which in turn could play an essential role in providing developmental biomechanical cues.

5.
Eur J Dermatol ; 33(6): 604-611, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38465540

RESUMO

Wound healing and skin regeneration after injury are complex biological processes, and deep injuries with a high degree of tissue destruction may result in severe scar formation. Clinically, scars can be classified into normal, hypertrophic and keloid scars. However, the molecular signature of each scar type is currently not known. The aim of this study was to reveal the transcriptional landscape of normal, hypertrophic and keloid skin scars following hand and plastic surgery based on total RNA sequencing. Eighteen skin scar samples from hand and plastic surgeries of human donors were minced directly after removal and stored in TRIzol (Thermo Fisher, USA). Samples were then subjected to RNA isolation, cDNA library preparation, bulk RNA sequencing and bioinformatics analysis. We show that keloid scars transcriptionally differed from normal and hypertrophic scars. Normal and hypertrophic scars presented overlapping clustering, and eight genes were shown to be commonly expressed between hypertrophic and normal scars. No genes were specifically expressed at a higher level in keloid and normal scars. Based on gene ontology pathway analysis, genes with a higher level of expression in keloid scars lead to increased (extra-) cellular matrix proliferation and cell interaction. Moreover, tumour-like genes were more highly expressed in keloid scars, supporting the clinical impression of strong and diffuse growth. This study furthers our understanding of the classification of differential scar types based on molecular signature, which may shed light on new diagnostic and therapeutic strategies for keloid scars in the future.


Assuntos
Cicatriz Hipertrófica , Queloide , Humanos , Queloide/genética , Queloide/patologia , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Pele/patologia , Cicatrização/genética , Hipertrofia/patologia
6.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552843

RESUMO

Prostate cancer bone metastasis is still one of the most fatal cancer diagnoses for men. Survival of the circulating prostate tumor cells and their adaptation strategy to survive in the bone niche is the key point to determining metastasis in early cancer stages. The promoter of SFRP2 gene, encoding a WNT signaling modulator, is hypermethylated in many cancer types including prostate cancer. Moreover, SFRP2 can positively regulate osteogenic differentiation in vitro and in vivo. Here, we showed SFRP2 overexpression in the prostate cancer cell line PC3 induces an epithelial mesenchymal transition (EMT), increases the attachment, and modifies the transcriptome towards an osteoblast-like phenotype (osteomimicry) in a collagen 1-dependent manner. Our data reflect a novel molecular mechanism concerning how metastasizing prostate cancer cells might increase their chance to survive within bone tissue.


Assuntos
Osteogênese , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Osteoblastos/metabolismo , Fenótipo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
7.
Cells ; 11(6)2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35326510

RESUMO

Injuries, high altitude, and endurance exercise lead to hypoxic conditions in skeletal muscle and sometimes to hypoxia-induced local tissue damage. Thus, regenerative myoblasts/satellite cells are exposed to different levels and durations of partial oxygen pressure depending on the spatial distance from the blood vessels. To date, it is unclear how hypoxia affects myoblasts proliferation, differentiation, and particularly fusion with normoxic myoblasts. To study this, we investigated how 21% and 2% oxygen affects C2C12 myoblast morphology, proliferation, and myogenic differentiation and evaluated the fusion of normoxic- or hypoxic-preconditioned C2C12 cells in 21% or 2% oxygen in vitro. Out data show that the long-term hypoxic culture condition does not affect the proliferation of C2C12 cells but leads to rounder cells and reduced myotube formation when compared with myoblasts exposed to normoxia. However, when normoxic- and hypoxic-preconditioned myoblasts were differentiated together, the resultant myotubes were significantly larger than the control myotubes. Whole transcriptome sequencing analysis revealed several novel candidate genes that are differentially regulated during the differentiation under normoxia and hypoxia in mixed culture conditions and may thus be involved in the increase in myotube size. Taken together, oxygen-dependent adaption and interaction of myoblasts may represent a novel approach for the development of innovative therapeutic targets.


Assuntos
Fibras Musculares Esqueléticas , Mioblastos , Humanos , Hipertrofia , Hipóxia , Oxigênio
8.
Endocrine ; 75(1): 266-275, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34529238

RESUMO

PURPOSE: Endochondral ossification, which involves transdifferentiation of chondrocytes into osteoblasts, is an important process involved in the development and postnatal growth of most vertebrate bones as well as in bone fracture healing. To study the basic molecular mechanisms of this process, a robust and easy-to-use in vitro model is desirable. Therefore, we aimed to develop a standardized in vitro assay for the transdifferentiation of chondrogenic cells towards the osteogenic lineage. METHODS: Murine chondrogenic ATDC5 cells were differentiated into the chondrogenic lineage for seven days and subsequently differentiated towards the osteogenic direction. Gene expression analysis of pluripotency, as well as chondrogenic and osteogenic markers, cell-matrix staining, and immunofluorescent staining, were performed to assess the differentiation. In addition, the effects of Wnt3a and lipopolysaccharides (LPS) on the transdifferentiation were tested by their addition to the osteogenic differentiation medium. RESULTS: Following osteogenic differentiation, chondrogenically pe-differentiated cells displayed the expression of pluripotency and osteogenic marker genes as well as alkaline phosphatase activity and a mineralized matrix. Co-expression of Col2a1 and Col1a1 after one day of osteogenic differentiation indicated that osteogenic cells had differentiated from chondrogenic cells. Wnt3a increased and LPS decreased transdifferentiation towards the osteogenic lineage. CONCLUSION: We successfully established a rapid, standardized in vitro assay for the transdifferentiation of chondrogenic cells into osteogenic cells, which is suitable for testing the effects of different compounds on this cellular process.


Assuntos
Condrócitos , Osteogênese , Animais , Diferenciação Celular , Transdiferenciação Celular , Células Cultivadas , Condrócitos/metabolismo , Condrogênese/genética , Camundongos , Osteoblastos
9.
Immun Inflamm Dis ; 9(4): 1631-1647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34499803

RESUMO

INTRODUCTION: Crohn's disease (CD) is characterized by pronounced intestinal fibrosis and severe mucosal damage and conventional animal models are limited to reflect these pathological manifestations. The aim of this study was to examine whether the combination of patient immune-profiling and preclinical studies in a mouse model based on NOD/scid IL-2Rγnull (NSG) reconstituted with peripheral blood mononuclear cells (PBMC) from CD patients has the capacity to harmonize ex vivo human and in vivo animal studies. METHODS: Immunological profiles of CD (n = 24) and ulcerative colitis (UC) patients (n = 47) were established by flow cytometry of subgroups of immune cells and subjected to hierarchical cluster and estimation graphics analyses. Pathological phenotypes of NSG mice, which were reconstituted with PBMC from CD, UC, and non-IBD donors (NSG-CD, NSG-UC, and NSG-non-IBD) were compared. Readouts were the clinical, colon, and histological scores; subtypes of immune cells from spleen and colon; and levels of inflammatory markers, such as c-reactive protein (CRP), monocyte chemotactic protein (MCP)-3, transforming growth factor-beta (TGFß), and hepatocyte growth factor (HGF). Fibrocytes were identified by immunohistochemistry in colonic sections. RESULTS: CD patients were significantly clustered in a group characterized by increased levels of TH1, TH2 cells, and decreased levels of CD14+ CD163+ monocytes (p = .003). In contrast to NSG-UC mice, NSG-CD mice exhibited an immune-remodeling phenotype characterized by enhanced collagen deposition, elevated levels of CD14+ CD163+ monocytes, HGF, and TGFß. This phenotype was further corroborated by the presence of human fibrocytes as components of fibrotic areas. CONCLUSION: The NSG-CD model partially reflects the human disease and allows for studying the development of fibrosis.


Assuntos
Doença de Crohn , Animais , Humanos , Leucócitos Mononucleares , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo
10.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502096

RESUMO

The potential of Fourier Transform infrared microspectroscopy (FTIR microspectroscopy) and multivariate analyses were applied for the classification of the frequency ranges responsible for the distribution changes of the main components of articular cartilage (AC) that occur during dietary ß-hydroxy-ß-methyl butyrate (HMB) supplementation. The FTIR imaging analysis of histological AC sections originating from 35-day old male piglets showed the change in the collagen and proteoglycan contents of the HMB-supplemented group compared to the control. The relative amount of collagen content in the superficial zone increased by more than 23% and in the middle zone by about 17%, while no changes in the deep zone were observed compared to the control group. Considering proteoglycans content, a significant increase was registered in the middle and deep zones, respectively; 62% and 52% compared to the control. AFM nanoindentation measurements collected from animals administered with HMB displayed an increase in AC tissue stiffness by detecting a higher value of Young's modulus in all investigated AC zones. We demonstrated that principal component analysis and artificial neural networks could be trained with spectral information to distinguish AC histological sections and the group under study accurately. This work may support the use and effectiveness of FTIR imaging combined with multivariate analyses as a quantitative alternative to traditional collagenous tissue-related histology.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Valeratos/farmacologia , Animais , Cartilagem Articular/química , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Suplementos Nutricionais , Módulo de Elasticidade , Masculino , Redes Neurais de Computação , Análise de Componente Principal , Proteoglicanas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos , Valeratos/administração & dosagem
11.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576079

RESUMO

Previous anatomical studies have shown different functional zones in human nasal septal cartilage (NC). These zones differ in respect to histological architecture and biochemical composition. The aim of this study was to investigate the influence of these zones on the fate of stem cells from a regenerative perspective. Therefore, decellularized porcine septal cartilage was prepared and subjected to histological assessment to demonstrate its equivalence to human cartilage. Decellularized porcine NC (DPNC) exposed distinct surfaces depending on two different histological zones: the outer surface (OS), which is equivalent to the superficial zone, and the inner surface (IS), which is equivalent to the central zone. Human adipose tissue-derived stem cells (ASCs) were isolated from the abdominal fat tissue of five female patients and were seeded on the IS and OS of DPNC, respectively. Cell seeding efficiency (CSE), vitality, proliferation, migration, the production of sulfated glycosaminoglycans (sGAG) and chondrogenic differentiation capacity were evaluated by histological staining (DAPI, Phalloidin, Live-Dead), biochemical assays (alamarBlue®, PicoGreen®, DMMB) and the quantification of gene expression (qPCR). Results show that cell vitality and CSE were not influenced by DPNC zones. ASCs, however, showed a significantly higher proliferation and elevated expression of early chondrogenic differentiation, as well as fibrocartilage markers, on the OS. On the contrary, there was a significantly higher upregulation of hypertrophy marker MMP13 (p < 0.0001) and GAG production (p = 0.0105) on the IS, whereas cell invasion into the three-dimensional DPNC was higher in comparison to the OS. We conclude that the zonal-dependent distinct architecture and composition of NC modulates activities of ASCs seeded on DPNC. These findings might be used for engineering of cartilage substitutes needed in facial reconstructive surgery that yield an equivalent histological and functional structure, such as native NC.


Assuntos
Tecido Adiposo/citologia , Cartilagens Nasais/anatomia & histologia , Cartilagens Nasais/fisiologia , Regeneração/fisiologia , Células-Tronco/citologia , Animais , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Condrogênese/genética , Feminino , Regulação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Cartilagens Nasais/citologia , Células-Tronco/metabolismo , Suínos
12.
J Biol Chem ; 297(4): 101224, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34560099

RESUMO

Energy metabolism and extracellular matrix (ECM) function together orchestrate and maintain tissue organization, but crosstalk between these processes is poorly understood. Here, we used single-cell RNA-Seq (scRNA-Seq) analysis to uncover the importance of the mitochondrial respiratory chain for ECM homeostasis in mature cartilage. This tissue produces large amounts of a specialized ECM to promote skeletal growth during development and maintain mobility throughout life. A combined approach of high-resolution scRNA-Seq, mass spectrometry/matrisome analysis, and atomic force microscopy was applied to mutant mice with cartilage-specific inactivation of respiratory chain function. This genetic inhibition in cartilage results in the expansion of a central area of 1-month-old mouse femur head cartilage, showing disorganized chondrocytes and increased deposition of ECM material. scRNA-Seq analysis identified a cell cluster-specific decrease in mitochondrial DNA-encoded respiratory chain genes and a unique regulation of ECM-related genes in nonarticular chondrocytes. These changes were associated with alterations in ECM composition, a shift in collagen/noncollagen protein content, and an increase of collagen crosslinking and ECM stiffness. These results demonstrate that mitochondrial respiratory chain dysfunction is a key factor that can promote ECM integrity and mechanostability in cartilage and presumably also in many other tissues.


Assuntos
Cartilagem/metabolismo , Matriz Extracelular/metabolismo , Fêmur/metabolismo , RNA-Seq , Análise de Célula Única , Animais , Transporte de Elétrons , Matriz Extracelular/genética , Camundongos , Camundongos Transgênicos
13.
Front Physiol ; 12: 684899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248671

RESUMO

In skeletal muscle tissue, oxygen (O2) plays a pivotal role in both metabolism and the regulation of several intercellular pathways, which can modify proliferation, differentiation and survival of cells within the myogenic lineage. The concentration of oxygen in muscle tissue is reduced during embryogenesis and pathological conditions. Myogenic progenitor cells, namely satellite cells, are necessary for muscular regeneration in adults and are localized in a hypoxic microenvironment under the basal lamina, suggesting that the O2 level could affect their function. This review presents the effects of reduced oxygen levels (hypoxia) on satellite cell survival, myoblast regeneration and differentiation in vertebrates. Further investigations and understanding of the pathways involved in adult muscle regeneration during hypoxic conditions are maybe clinically relevant to seek for novel drug treatments for patients with severe muscle damage. We especially outlined the effect of hypoxia-inducible factor 1-alpha (HIF1A), the most studied transcriptional regulator of cellular and developmental response to hypoxia, whose investigation has recently been awarded with the Nobel price.

14.
J Crohns Colitis ; 15(11): 1943-1958, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33891001

RESUMO

BACKGROUND AND AIMS: The potassium channel Kv1.3 is a potentially attractive therapeutic target in T cell-mediated inflammatory diseases, as the activity of antigen-activated T cells is selectively impeded by Kv1.3 inhibition. In this study, we examined Kv1.3 as a potential therapeutic intervention point for ulcerative colitis [UC], and studied the efficacy of DES1, a small-molecule inhibitor of Kv1.3, in vitro and in vivo. METHODS: Kv1.3 expression on T cells in peripheral blood mononuclear cells [PBMCs] isolated from donors with and without UC was examined by flow cytometry. In biopsies from UC patients, Kv1.3-expressing CD4+ T cells were detected by flow cytometry and immunohistochemistry. In vitro, we determined the ability of DES1 to inhibit anti-CD3-driven activation of T cells. In vivo, the efficacy of DES1 was determined in a humanised mouse model of UC and compared with infliximab and tofacitinib in head-to-head studies. RESULTS: Kv1.3 expression was elevated in PBMCs from UC patients and correlated with the prevalence of TH1 and TH2 T cells. Kv1.3 expression was also detected on T cells from biopsies of UC patients. In vitro, DES1 suppressed anti-CD3-driven activation of T cells in a concentration-dependent manner. In vivo, DES1 significantly ameliorated inflammation in the UC model and most effectively so when PBMCs from donors with higher levels of activated T cells were selected for reconstitution. The efficacy of DES1 was comparable to that of either infliximab or tofacitinib. CONCLUSION: Inhibition of Kv1.3 [by DES1, for instance] appears to be a potential therapeutic intervention strategy for UC patients.


Assuntos
Colite Ulcerativa/complicações , Inflamação/tratamento farmacológico , Canal de Potássio Kv1.3/antagonistas & inibidores , Proteínas de Membrana/uso terapêutico , Oxirredutases/uso terapêutico , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/fisiopatologia , Modelos Animais de Doenças , Alemanha , Inflamação/fisiopatologia , Leucócitos Mononucleares/efeitos dos fármacos , Proteínas de Membrana/farmacologia , Camundongos , Oxirredutases/farmacologia
15.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803805

RESUMO

During biomineralization, the cells generating the biominerals must be able to sense the external physical stimuli exerted by the growing mineralized tissue and change their intracellular protein composition according to these stimuli. In molluscan shell, the myosin-chitin synthases have been suggested to be the link for this communication between cells and the biomaterial. Hyaluronan synthases (HAS) belong to the same enzyme family as chitin synthases. Their product hyaluronan (HA) occurs in the bone and is supposed to have a regulatory function during bone regeneration. We hypothesize that HASes' expression and activity are controlled by fluid-induced mechanotransduction as it is known for molluscan chitin synthases. In this study, bone marrow-derived human mesenchymal stem cells (hMSCs) were exposed to fluid shear stress of 10 Pa. The RNA transcriptome was analyzed by RNA sequencing (RNAseq). HA concentrations in the supernatants were measured by ELISA. The cellular structure of hMSCs and HAS2-overexpressing hMSCs was investigated after treatment with shear stress using confocal microscopy. Fluid shear stress upregulated the expression of genes that encode proteins belonging to the HA biosynthesis and bone mineralization pathways. The HAS activity appeared to be induced. Knowledge about the regulation mechanism governing HAS expression, trafficking, enzymatic activation and quality of the HA product in hMSCs is essential to understand the biological role of HA in the bone microenvironment.


Assuntos
Hialuronan Sintases/metabolismo , Células-Tronco Mesenquimais/enzimologia , Reologia , Estresse Mecânico , Idoso , Idoso de 80 Anos ou mais , Forma Celular , Células Cultivadas , Humanos , Ácido Hialurônico/biossíntese , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Transcrição Gênica , Regulação para Cima/genética
16.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008608

RESUMO

Ageing or obesity are risk factors for protein aggregation in the endoplasmic reticulum (ER) of chondrocytes. This condition is called ER stress and leads to induction of the unfolded protein response (UPR), which, depending on the stress level, restores normal cell function or initiates apoptotic cell death. Here the role of ER stress in knee osteoarthritis (OA) was evaluated. It was first tested in vitro and in vivo whether a knockout (KO) of the protein disulfide isomerase ERp57 in chondrocytes induces sufficient ER stress for such analyses. ER stress in ERp57 KO chondrocytes was confirmed by immunofluorescence, immunohistochemistry, and transmission electron microscopy. Knee joints of wildtype (WT) and cartilage-specific ERp57 KO mice (ERp57 cKO) were analyzed by indentation-type atomic force microscopy (IT-AFM), toluidine blue, and immunofluorescence/-histochemical staining. Apoptotic cell death was investigated by a TUNEL assay. Additionally, OA was induced via forced exercise on a treadmill. ER stress in chondrocytes resulted in a reduced compressive stiffness of knee cartilage. With ER stress, 18-month-old mice developed osteoarthritic cartilage degeneration with osteophyte formation in knee joints. These degenerative changes were preceded by apoptotic death in articular chondrocytes. Young mice were not susceptible to OA, even when subjected to forced exercise. This study demonstrates that ER stress induces the development of age-related knee osteoarthritis owing to a decreased protective function of the UPR in chondrocytes with increasing age, while apoptosis increases. Therefore, inhibition of ER stress appears to be an attractive therapeutic target for OA.


Assuntos
Condrócitos/metabolismo , Estresse do Retículo Endoplasmático , Articulação do Joelho/metabolismo , Osteoartrite do Joelho/metabolismo , Isomerases de Dissulfetos de Proteínas , Animais , Apoptose , Linhagem Celular , Condrócitos/fisiologia , Humanos , Articulação do Joelho/patologia , Masculino , Camundongos , Camundongos Knockout , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/fisiopatologia , Resposta a Proteínas não Dobradas
17.
Xenotransplantation ; 28(2): e12660, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33350016

RESUMO

BACKGROUND: Cartilage shortage is a major problem in facial reconstructive surgery. Prior studies have shown that decellularized porcine nasal septal cartilage (DPNC) seeded with primary human nasal chondrocytes enabled cartilage regeneration and showed potential as a replacement material for nasal cartilage. Since adipose tissue-derived stem cells (ASCs) are easily accessible and almost abundantly available, they appear to be a promising alternative to limited chondrocytes making the combination of DPNC and ASCs a feasible approach towards clinical translation. Thus, this study was intended to investigate the interactions between ASCs and DPNC in an in vitro model. METHODS: DPNCs were seeded and 3D-cultured with primary human ASCs that were priorly characterized with trilineage differentiation and flow cytometry. Cell vitality and proliferation were evaluated by Live-Dead, alamarBlue, and PicoGreen assays. Chondrogenic differentiation was examined by DMMB assay and cryosectioning-based histology. Cell invasion within DPNC was visualized and quantified by fluorescent histology (DAPI, Phalloidin). RESULTS: ASCs showed good adherence to DPNC and Live-Dead assay proved their viability over 2 weeks. AlamarBlueassay showed an increase in metabolic activity compared to 2D cultures, and PicoGreen assay demonstrated an increase of cell number within DPNC over time. Biochemical assays and histology added evidence of chondrogenic differentiation of 3D-cultured ASCs under the influence of chondrogenic induction medium. Fluorescent image analysis showed a significant increase of cell-occupied areas of scaffolds over time (P < .05). CONCLUSIONS: DPNC scaffolds provided a suitable environment for ASCs that allowed good cell vitality, high proliferation, and chondrogenic differentiation. Thus, the use of ASCs and DPNC yields a promising alternative to the use of primary human chondrocytes. For facial cartilage tissue engineering, we regard ASCs as an attractive alternative to human nasal chondrocytes due to their better accessibility and availability. Further research will be necessary to determine long-term effects and in vivo outcomes of ASCs and DPNC in cartilage regeneration of the face.


Assuntos
Cartilagens Nasais , Células-Tronco , Tecido Adiposo , Animais , Humanos , Regeneração , Suínos , Transplante Heterólogo
18.
Development ; 147(22)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33051257

RESUMO

The notochord drives longitudinal growth of the body axis by convergent extension, a highly conserved developmental process that depends on non-canonical Wnt/planar cell polarity (PCP) signaling. However, the role of cell-matrix interactions mediated by integrins in the development of the notochord is unclear. We developed transgenic Cre mice, in which the ß1 integrin gene (Itgb1) is ablated at E8.0 in the notochord only or in the notochord and tail bud. These Itgb1 conditional mutants display misaligned, malformed vertebral bodies, hemi-vertebrae and truncated tails. From early somite stages, the notochord was interrupted and displaced in these mutants. Convergent extension of the notochord was impaired with defective cell movement. Treatment of E7.25 wild-type embryos with anti-ß1 integrin blocking antibodies, to target node pit cells, disrupted asymmetric localization of VANGL2. Our study implicates pivotal roles of ß1 integrin for the establishment of PCP and convergent extension of the developing notochord, its structural integrity and positioning, thereby ensuring development of the nucleus pulposus and the proper alignment of vertebral bodies and intervertebral discs. Failure of this control may contribute to human congenital spine malformations.


Assuntos
Movimento Celular , Integrina beta1/metabolismo , Disco Intervertebral/embriologia , Notocorda/embriologia , Coluna Vertebral/embriologia , Via de Sinalização Wnt , Animais , Integrina beta1/genética , Disco Intervertebral/citologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Notocorda/citologia , Coluna Vertebral/citologia
19.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036285

RESUMO

We have determined the sensitivity and detection limit of a new fiber Bragg grating (FBG)-based optoelectronic micro-indenter for biomechanical testing of cartilage and compared the results to indentation-type atomic force microscopy (IT-AFM) and histological staining. As test samples, we used bovine articular cartilage, which was enzymatically degraded ex vivo for five minutes using different concentrations of collagenase (5, 50, 100 and 500 µg/mL) to mimic moderate extracellular matrix deterioration seen in early-stage osteoarthritis (OA). Picrosirius Red staining and polarization microscopy demonstrated gradual, concentration-dependent disorganization of the collagen fibrillar network in the superficial zone of the explants. Osteoarthritis Research Society International (OARSI) grading of histopathological changes did not discriminate between undigested and enzymatically degraded explants. IT-AFM was the most sensitive method for detecting minute changes in cartilage biomechanics induced by the lowest collagenase concentration, however, it did not distinguish different levels of cartilage degeneration for collagenase concentrations higher than 5 µg/mL. The FBG micro-indenter provided a better and more precise assessment of the level of cartilage degeneration than the OARSI histological grading system but it was less sensitive at detecting mechanical changes than IT-AFM. The FBG-sensor allowed us to observe differences in cartilage biomechanics for collagenase concentrations of 100 and 500 µg/mL. Our results confirm that the FBG sensor is capable of detecting small changes in articular cartilage stiffness, which may be associated with initial cartilage degeneration caused by early OA.


Assuntos
Doenças das Cartilagens/diagnóstico , Cartilagem Articular/química , Elasticidade , Osteoartrite/diagnóstico , Animais , Fenômenos Biomecânicos , Doenças das Cartilagens/patologia , Cartilagem Articular/fisiologia , Bovinos , Colagenases , Microscopia de Força Atômica , Osteoartrite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA